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A classic paradigm of soft and extensible polymer materials is the
difficulty of combining reversible elasticity with high fracture
toughness, in particular for moduli above 1 MPa. Our recent
discovery of multiple network acrylic elastomers opened a pathway
to obtain precisely such a combination. We show here that they can
be seen as true molecular composites with a well–cross-linked net-
work acting as a percolating filler embedded in an extensible ma-
trix, so that the stress–strain curves of a family of molecular
composite materials made with different volume fractions of the
same cross-linked network can be renormalized into a master curve.
For low volume fractions (<3%) of cross-linked network, we dem-
onstrate with mechanoluminescence experiments that the elasto-
mer undergoes a strong localized softening due to scission of
covalent bonds followed by a stable necking process, a phenome-
non never observed before in elastomers. The quantification of the
emitted luminescence shows that the damage in the material occurs
in two steps, with a first step where random bond breakage occurs
in the material accompanied by a moderate level of dissipated en-
ergy and a second step where a moderate level of more localized
bond scission leads to a much larger level of dissipated energy. This
combined use of mechanical macroscopic testing and molecular
bond scission data provides unprecedented insight on how tough
soft materials can damage and fail.
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Soft materials are irreplaceable whenever large reversible
deformations are needed and find widespread classical ap-

plications in engineering (1) and new ones in emerging fields
such as soft robotics (2) and wearable electronics (3) and in the
biomedical field where flexible and tough hydrogels appear very
promising (4–6). However, an important limitation is the diffi-
culty to combine fully reversible elasticity with high fracture
toughness particularly for high-modulus unfilled elastomers (7,
8). Strategies have been used in the past to address this problem
such as elastomers with short and long chains (9) or double-
network elastomers made by imparting a second cross-linking
to a lightly cross-linked elastomer in its stretched state (10, 11).
However, for a noncrystallizable rubber this strategy does not
really improve toughness significantly.
We demonstrated recently that such combination of proper-

ties can be obtained with multiple network elastomers where a
well–cross-linked network is first swollen in monomer and sub-
sequently polymerized to create a so-called double network
(DN) (12–14). If the swelling and polymerization operation is
repeated on the DN, one obtains a triple network (TN) dis-
playing considerable toughness, attributed to a mechanism of
internal damage dissipating energy and delaying crack propaga-
tion (14). Such a mechanism of strain-dependent damage has
been also incorporated in recent phenomenological models (15–
17). However, many questions remain on the structural re-
quirements to obtain this remarkable combination of properties,
and the purpose of this paper is to generalize the approach and
demonstrate that this new class of elastomeric materials, inspired
by hydrogels (18, 19), can be seen as a molecular version of the

classical laminated or fabric composites made by imbibing stiff
carbon or aramid fiber fabrics with a polymerizable epoxy resin
(20). In the macroscopic composite, elastic properties are mainly
controlled by the fibers, whereas in the multiple network elas-
tomer they are mainly controlled by the first network.
The network synthesized first [referred to as SN in our first

work (14)] can be seen as a continuous filler (like the fabric of
the classical composite), and we will refer to it as “filler net-
work.” The networks polymerized in steps 2, 3 (DN and TN in
ref. 14), or more will be called matrix networks. Exploring a
variety of intermediate degrees of swelling and one to three
swelling steps, we show that the elastic properties of the com-
posite network can be mainly described by two parameters: the
maximum extensibility of the strands of the filler network and the
fraction of that extensibility that is used in the swelling steps. We
further demonstrate with mechanoluminescent molecules that
localized (as opposed to random) bond breaking in the first
network results in a stable necking process in an elastomer where
both necked and unnecked regions coexist and display reversible
rubber elasticity with different elastic constants.

Nonlinear Elasticity
Fig. 1 describes schematically the synthesis of the molecular
composite network by successive swelling and polymerization
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steps to create samples with increasing prestretching states and
decreasing volume fractions of the filler network. The details of
the synthesis and the exact composition of each material used
here are reported in Materials and Methods and in SI Appendix,
section S1 and Table S1. Because the filler network is much
more cross-linked than the matrix networks that are synthesized
during the subsequent swelling and polymerization steps, the
composite network can be more accurately described by the
degree of isotropic prestretching λ0 of the filler network strands
than by the number of polymerization steps. An example of the
tensile properties of two composite networks obtained from the
same filler network stretched to the same degree λ0 but with a
different number of steps is given in SI Appendix, Fig. S1, and the
difference is within experimental error. The list of samples made
from the same filler network but with different values of
λ0 varying from 1 to 3.42 is shown in Table 1. For simplicity,
samples will then be referred to as EA(λ0), where the first EA
refers to the monomer used for the filler network. Although
other monomers can be used (12), EA was the only monomer
used for the matrix network(s) in this work. When the pre-
stretching of the filler network λ0 changes, so does its volume
fraction ϕFN. Those two parameters are related by the relation-
ship shown in Eq. 1.

λ30 =
1

ϕFN
. [1]

Every sample was cut in a dumbbell shape, and a uniaxial tensile
test was performed. The results of the uniaxial tests to fracture at
a constant stretch rate _λ = 0.02 s−1 are displayed in Fig. 2A,
where σN is the nominal stress and λ is the stretch. The degree
of isotropic prestretching of the filler network indicated in the
figure varies from a starting value of λ0 = 1 for the brittle stand-
alone unstretched filler network to λ0 = 3.42 for a composite
network containing less than 3 wt % of the highly stretched filler
network. It is clear from the data that the qualitative behavior of
the molecular composites changes significantly as the filler net-
work is being progressively diluted and prestretched.
The Young’s modulus E of the material increases nonlinearly

with λ0, as shown in Fig. 2B with a clear change of slope when
λ0 reaches the value of 2.5–3. Fig. 2A also shows that λ0 has a very

strong influence on the onset of strain hardening, and the initial
portion of each curve shown in Fig. 2A can be fitted with
an empirical constitutive model proposed by Gent (21) that
specifically includes strain hardening. In uniaxial tension the
nominal stress is given by

σN =
E
�
λ2 − 1

λ

�
3
�
1− J1

Jm

�, [2]

where J1 = λ2 + 2λ− 3 in uniaxial tension and Jm is the maximum
admissible value of J1. This model was used to fit each stress–
strain curve in Fig. 2A, and an example of the quality of the fit
is shown in SI Appendix, Fig. S2. E, Jm, and hence λh, defined as
the value of λ corresponding to J1 = Jm in uniaxial extension,
were obtained for each curve. As shown in Fig. 2C, both Jm and
λh decrease with increasing λ0; that is, the material becomes less
extensible as the filler network is more prestretched.
For this set of samples, the filler network has been kept strictly

identical so that the intrinsic average maximum elongation of its
strands should be the same for every composite network. The
theoretical value of this maximum elongation λlimit can be esti-
mated from the cross-linking and trapped entanglement contri-
bution to the elastic modulus, as obtained from the minimum in
Mooney stress (22) as shown in SI Appendix, Fig. S3. For the
filler network the cross-linking contribution to the tensile mod-
ulus is 0.76 MPa. The average molar mass between cross-links
can then be obtained by using the affine network model of
rubber elasticity (23), leading to λlimit ∼ 3.9 (see SI Appendix for
details), which can be compared with the experimental value of
the maximum stretchability of the composite networks obtained
by fitting the uniaxial extension data with Eq. 2. For multiple
networks, where chains of the filler network are isotropically
prestretched at λ0, we define the product λ0λh as the maximum
experimental extensibility of the filler network due to the com-
bined effect of swelling and uniaxial extension. The product λ0λh
is relatively constant and around 4.5, only slightly higher than the
theoretical limiting chain stretch λlimit (SI Appendix, Fig. S4).
Because λ0 corresponds to triaxial deformation and λh corre-
sponds to uniaxial deformation, this result implies that the strain
hardening is controlled only by the few chains of the filler net-
work oriented in the direction of the uniaxial deformation.
Coming now back to Fig. 2B, the sharp upturn of the small strain
modulus at high values of λ0 can be explained by the onset of the
finite extensibility of the filler network chains. A value of λ0 ∼ 2.5
corresponds to about 55% of the experimental limiting chain
stretch λ0λh, a regime where Gaussian elasticity breaks down and

1: Synthesis of the filler network

2: Swelling in solvent + monomer

3: Polymeriza�on of the matrix network(s)
4: Drying of Solvent

Fig. 1. Synthesis of multiple networks with intermediate value of the pre-
stretching λ0. Red dots, EA monomer; green dots, ethyl acetate; blue net-
work, filler network; red network, matrix network.

Table 1. List of samples synthesized with varying values of
λ0 and volume fraction of filler network in the molecular
composite

Sample name λ0 Filler, wt %
No. of swelling/polymerization

steps

EA(1) 1 100 1
EA(1.32) 1.32 42.0 2
EA(1.51) 1.51 29.2 2
EA(1.68) 1.68 20.5 2
EA(2.18) 2.18 9.52 3
EA(2.41) 2.41 7.39 3
EA(2.55) 2.55 6.06 3
EA(2.91) 2.91 4.19 4
EA(3.11) 3.11 3.53 4
EA(3.27) 3.27 3.28 4
EA(3.42) 3.42 2.88 4

The last column shows the number of polymerization steps.
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finite chain extensibility described by the Langevin relation
becomes dominant (24).
If the strain hardening is mainly controlled by the extension

level of the filler network, it should be possible to create a master
curve of the elastic behavior by rescaling λ and σN. For the
renormalized stretch we can define λcor = λpλ0 corresponding to
the actual stretch seen by the filler network strands (14), and the
nominal stress can be renormalized by the areal density of filler
strands ΣFN crossing the plane normal to the tensile direction.
As the volume density of strands of the filler network is diluted
by ϕFN during the swelling and polymerization steps, ΣFN =P

FN0ϕFN

2 =

3 for each multiple network. Fig. 3A shows the nominal
stress as a function of the elongation of the filler network λcor,
whereas Fig. 3B shows the normalized stress as a function of λcor.
This renormalized representation of the stress and strain shows
that the strain hardening kicks in at a common value λcor ∼ 4 for
the whole set of materials made from the same filler network and
that the correction of the nominal stress by the areal density of
filler network strands gives a good master curve for the large
strain part of the curves. The successful rescaling of Fig. 2A into
Fig. 3B is consistent with a recently developed mechanical model
of double and multinetwork elastomers (17). Nevertheless, it
should be noted that the existence (or not) of a softening stage
before fracture is not described by the dilution factor alone and
requires further analysis. In particular, the simplified description
of the multiple networks as a composite ignores the connectivity
between the networks. Because the synthesis is carried out by free
radical polymerization in the bulk, there will be some chain transfer
to the polymer by hydrogen abstraction (25), and there will be
some sparse covalent bonds connecting the networks together.

Softening and Damage Process
One of the most interesting results shown in Fig. 2A is the oc-
currence for certain sample compositions (very high λ0) of a
plateau in nominal stress. This specific behavior, observed in

double network hydrogels (26) and due to a necking phenome-
non, has never been observed in elastomers. To better grasp the
mechanism, it is first important to look at its reversibility. Fig. 4A
shows a step-cycle experiment with increasing strain amplitude
(three cycles have been carried out for each incremental value of
λ) carried out on a highly prestretched material (λ0 = 3.42). A
hysteresis starts to appear at λ ∼ 1.3. Then the nominal stress
shows a plateau, and the hysteresis continues to increase after the
beginning of the plateau (λ = 2.2). Finally, the nominal stress in-
creases again and the sample fails. Two important points should
be noted: first, after a cycle to a higher extension that causes some
damage, the material always remains nearly fully elastic in the
subsequent loading unloading cycles to the same extension (Fig.
4A, Inset), and second, the initial modulus E starts to decrease
sharply before the point where the nominal stress becomes
constant as shown in Fig. 4B. In the region where the nominal
stress is constant (2.5 < λ < 4), the sample is split into two
rubber elastic domains with different nonlinear elastic proper-
ties, an unnecked domain where the elongation is λ ∼ 2.5 and a
highly damaged domain, where the elongation is λ ∼ 4. Both re-
gions coexist at the same level of nominal stress, i.e., the same force.
Images of the necked regions are shown in SI Appendix, Fig. S5.
To visualize directly whether bond scission occurs during the

necking process, we synthesized a sample containing mechano-
luminescent molecules as cross-linker of the filler network.
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Fig. 2. (A) Stress–strain curves of different composites EA (λ0) made from the
same filler network. The value of λ0 is shown in the labels attached to each curve.
The color corresponds to the number of polymerization steps: black, one; red,
two; blue, three; and green, four. _λ = 0.021 s−1 for all tests. (B) Young’s modulus
as a function of the degree of prestretching λ0 of the filler network. (C) Evolution
of Jm and λh obtained from the best fit to the Gent model as a function of λ0.
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These molecules, based on bis-adamantane dioxetane, need to
be specifically synthesized (27), and the procedure is detailed in
SI Appendix. They emit light when the dioxetane cycle is broken
and hence report chain scission (14, 28). This labeled sample was
tested in uniaxial tension, and the results of this experiment are
shown in Figs. 5 and 6.
The sample starts necking at a maximum in nominal stress,

then the nominal stress remains constant while the necked region
propagates, and finally, σN increases again. Although this labeled
sample is slightly different from the one presented in Fig. 4, the
qualitative behavior is exactly the same. The analysis of the
different images can be summarized as follows:

At low elongation, no mechanoluminescent signal is detected,
and the bond scission, if it occurs, is below the detection limit.

After the inflection point but before the maximum in stress, a
homogeneous light signal is observed over the entire sample as
also observed by Ducrot et al. (14), and the macroscopic mod-
ulus decreases sharply.

At the maximum in nominal stress the signal becomes less
intense and is no longer homogeneous over the entire sample.
A very localized damage region grows, corresponding to the
volume where the necking initiates.

The two necking fronts move in opposite directions, and bond
scission is concentrated in the region where the materials tran-
sition from λ = λ1 to λ = λ2. No light is detected over the rest of
the sample.

The upper necking front has been stopped by the wider zone
of the dumbbell, and the front moving down has probably been
stopped by a heterogeneity (corresponding to the slight in-
crease of stress shown at λ = 3). Following this, a new necked
area is nucleated in the lower part of the sample, and the two
new fronts are visible on the lower part of the sample.

When λ > 4.2, the necking has expanded over all of the central
zone of the sample. Bond scission can be only seen in the
bottom part (note that the top grip and the top part of the
sample are now out of the field of view of the camera).

To complete the analysis of the phenomenon, the spatially
averaged intensity of the signal was quantified as a function of
stretch. Details of the image analysis method can be found in SI
Appendix. As shown in Fig. 6A, the intensity emitted by the
sample increased sharply at the onset of strain hardening (λ =
1.4), until it reached a plateau value. Following this plateau the
intensity dropped when the actual necking started reflecting the
localization of the bond scission in an active zone [a similar lo-
calization to that which occurs during the formation of crazes in
glassy polymers (29)]. During the propagation of the necking
fronts observed in the images of Fig. 5, the total signal appears to

be relatively constant. The intensity of the light signal shown in
Fig. 6A can be integrated for each image (for the same sample
volume) to obtain the cumulated signal in Fig. 6B. In our pre-
vious work (14) we found a power-law relation between the cu-
mulated intensity of the light emission and the cumulated
mechanical hysteresis. Although we do not have the hysteresis
and light emission data for exactly the same sample, we can still
compare qualitatively both phenomena by examining the hys-
teresis measured as a function of λ for a very similar sample to
that tested in Fig. 4A as a function of λ. Comparing Fig. 6 B and C,
it is obvious that the damage in the material occurs in two stages: in
a first stage, there is significant random bond scission in the ma-
terial with a relatively modest energy loss by mechanical hysteresis,
whereas in a second stage the necking triggers localized bond
scission, which in turn causes significant mechanical hysteresis.

Molecular Fracture Criterion for the Necking
Because we demonstrated that the necking process was related
to bond scission in the filler network, the value of the maximum
nominal stress at the onset of necking should be linked to the
nominal areal density of filler network strands crossing the
fracture plane. The areal chain density inside a simple network
can be calculated with some assumptions (30, 31). If the cross-
linking is random and has a functionality of four, the areal chain
density of the filler network ΣFN0 can be estimated using Eq. 3
with ν the number of cross-linking points per unit volume and
R0

21=2 the average distance between cross-links. From Gaussian
statistics, we can then obtain Eq. 4, where all parameters are
independently known: l0 is the length of a C–C bond (1.54 Å),
EFN0 is the tensile modulus of the filler network, C∞ is the
polymer characteristic ratio, and Nx is the number of carbon
bonds between cross-link points estimated previously. When the
filler network is swollen with monomer during the multiple steps
of polymerization, the initial surface chain density ΣFN0 is diluted
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as described in Eq. 5, so that the filler network areal chain
density ΣFN can be estimated for our entire set of samples.

ΣFN =
v*
�
R0

2�1=2
2

, [3]

ΣFN0 =
l0EFN

ffiffiffiffiffiffiffiffiffiffiffiffiffi
C∞Nx

p
6k  T

= l0

	
EFNρNAC∞

6M0kT


1=2
, [4]

ΣFN =ΣFN0ϕ
2 =

3. [5]

Fig. 6D plots the measured values of the nominal necking stress
as a function of ΣFN, the filler network’s areal strand density
calculated based on Eqs. 4 and 5, and the results are consistent
with the prediction. Details of the determination of the necking
stress are in SI Appendix, and an example is shown in SI Appen-
dix, Fig. S6. The best fit of the experimental points shows that
the intercept is very close to the origin. However, the slope of the
curve is 0.24 nN per strand, which is roughly a tenth of the
breakage strength of a C–C bond (32), a very similar value to
that found by Matsuda et al. (33) for double-network gels. This is
consistent with the results of Figs. 5 and 6 and suggests that the
necking process is due to the presence of stress concentrations in
the material leading to a localized failure of filler network bonds
such as the microcracks proposed by Brown (34).
The results reported here paint a specific picture of the struc-

ture of these multiple-network elastomers. For the whole family of
materials made from the same filler network the mechanical
properties are highly nonlinear and transition from a behavior
dominated by the total density of elastic strands per unit volume
(in the Gaussian regime where matrix and filler are not highly
stretched) to the areal density of the strands of the filler network
alone and their Langevin elasticity in the chain stretching regime.
At high strain, the topology of the network (i.e., how the strands
are connected together) becomes increasingly important. In that
sense they can be seen as molecular composites with a behavior
dominated by the extensible matrix in small strain and by the stiff
continuous filler network in large strain.
A key property of this set of materials is their fracture tough-

ness, which becomes progressively much higher than that of the

single network [compare the stress and strain at break of material
EA(2.55) with that of EA(1)]. This improvement depends not only
on the elastic properties but also, and mainly, on the way the
damaged structure resists crack propagation as just discussed.

Role of the Matrix in the Toughening
It is therefore interesting to investigate the role played by the matrix
network in the increase in toughness and in the necking process. To
probe that effect we have prepared two sets of samples (detailed
composition of the samples is described in SI Appendix, Table S3)
with nearly identical values of λ0 but where the last polymerization
step was replaced by a simple swelling with a solvent. Fig. 7A shows
the comparison between EA(1.68) swollen by dimethylsulfoxyde
(DMSO) to λ0 ∼ 2.2 and the same network swollen by a monomer
solution and polymerized to the same value of λ0. Fig. 7B shows
the same comparison but for EA(2.53) swollen by 1-methyl-2-
pyrrolidone (MPD) to λ0 ∼ 3.3 and its polymerized counterpart.
More examples are shown in SI Appendix, Figs. S7 and S8.
If one compares a set of materials prepared with different

values of λ0 but where the last step has been either solvent
swelling or monomer swelling and polymerization, the moduli of
both sets of materials is nearly identical (Fig. 7C), and the Gent
fit to the strain hardening gives nearly the same best fit value for
the fully polymerized sample and for the solvent swollen one (SI
Appendix, Fig. S9). However, if one compares the true stress at
break (Fig. 7D), the difference is obvious and particularly sig-
nificant for the samples with 2 < λ0 < 3. At high values of λ0, the
influence of the solvent on Young’s modulus and onset of strain
hardening appears to be negligible, suggesting that in this regime
the elastic properties are controlled by the highly diluted chains
of the filler network alone. However, the strength and fracture
resistance of the molecular composite is clearly due to the syn-
ergy between the unbroken filler network providing stiffness at
low strain and the softened filler network and matrix network,
which provides entanglements and a strain hardening mechanism
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Fig. 7. (A) Stress–strain curves of EA(1.68) swollen by DMSO to λ0 = 2.22
(blue line) in comparison with EA(2.18), a fully polymerized sample with a
similar prestretching (red line). _λ = 0.021 s−1. (B) Stress–strain curves of EA
(2.53) swollen by MPD to λ0 = 3.31 (blue line) in comparison with EA(3.27), a
fully polymerized sample with a similar prestretching (red line). _λ = 0.021 s−1.
(C) Evolution of the modulus as a function of λ0 for standard samples (red
triangles) and for samples partially swollen in solvent (blue circles). (D) True
stress at break as a function of λ0 for standard samples (red triangles) and for
samples partially swollen in solvent (blue circles).
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Fig. 6. (A) Stress–strain curve (red line) and intensity of the mechanolumi-
nescent signal (black line) as a function stretch for the sample EA(d20)0.73(2.94).
(B) Cumulated intensity (black line) of the mechanoluminescent signal and
nominal stress (red line) as a function of λ. (C) Cumulated mechanical hysteresis
(red symbols) and nominal stress (black line) in a cyclic test carried out on the
EA1.45(3.42) as a function of λ, along with the nominal stress. (D) Evolution of
the necking stress as a function of the filler network’s areal density of strands.
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at high strain that may stabilize a necking process and prevent
crack propagation once the filler network is strongly softened.

Concluding Remarks
We have shown that multiple network elastomers can be seen in a
simplified way as molecular composites with a stiff and continuous
internal phase (the filler network), which is synthesized first, and a
second phase (the matrix network) that acts as a highly extensible
but incompressible matrix. The two important parameters con-
trolling the elastic properties of the composite are the maximum
extensibility of the filler network and its volume fraction. The
elastic part of the uniaxial stress–strain curve can be represented
as a master curve if one assumes that the stress is carried by the
chains of the filler network alone. However, as observed for DN
gels (33, 35, 36), the stress and strain at break of the material are
highly dependent on the presence of the entangled matrix, and
ductile behavior is only obtained when the load can be efficiently
transferred from the filler network to the matrix network. We have
conclusively shown with mechanoluminescent molecules that this
process occurs in two steps: first, a random scission of highly
loaded bonds in the filler network and then a second step where a
more localized failure of bonds (macroscopically and at the mo-
lecular level) causes a sharp drop in stiffness. In conventional
nanocomposites such as carbon-black filled rubbers (37) the
nanofillers form also a percolating network (38). However, this
particle-based network is fractal in nature, and damage starts from
very low strain involving breakup of connecting bridges between
particles and particle reorganization. Therefore, both the strain
hardening and the damage is much more progressive than for the
continuous filler composites reported here and as a result never
leads to necking. Despite this difference, the breakup of the filler
network and load transfer to the matrix network may occur at the
crack tip in many tough elastomeric materials, and investigating in
detail how the load is transferred from the filler network strands to

the matrix network maybe highly relevant also for other types of
elastomeric composites where an embedded stiff network (con-
tinuous or made of filler particles) increases fracture toughness by
introducing an internal damage process into an extensible matrix.

Materials and Methods
The filler network was prepared from ethyl acrylate, butanediol bis(acrylate),
and a UV initiator. All reagents were dissolved in an approximately equal mass
of ethyl acetate, and the UV polymerization was carried out in a glove box
inside a closed mold (14). Ethyl acetate was used instead of the previously used
toluene (14) to limit chain transfer to the solvent during polymerization. After
extracting the unreacted species and solvent and drying the sample, the filler
network was swollen to equilibrium in a bath composed of ethyl acrylate
monomer, a small amount of cross-linker (0.01 mol % relative to monomer),
UV initiator, and 0–75 wt % of solvent (the solvent was not present in our
previous work). The swollen piece of network is then taken out of the bath,
and a new UV polymerization is carried out in between glass plates. Finally,
the sample is fully dried of excess solvent and ready for testing or further
swelling. Each polymerization step increases the volume of the sample iso-
tropically and stretches the polymer strands of the filler network.

For the mechanoluminescence experiments we synthesized a filler net-
work containing 0.73 mol % cross-linker, 20% of which was dioxetane.
During three subsequent swelling and polymerization steps the matrix was
then synthesized to give the material EA(d20)(2.94). Note that no dioxetane
cross-linker was used for thematrix synthesis. The initial modulus and λ0 value
of that labeled sample was very similar to the materials of Table 1 and Fig.
2A with λ0 ∼ 3. A sample was fixed in the clamps, and the tensile test was
carried out while recording some images with a sensitive Andor iXon Ultra
897 EMCCD (electron multiplying charged coupled device) camera at the
frame rate of two images taken per second and acquisition settings detailed
in SI Appendix.
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