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ABSTRACT: Systematic loading and unloading experiments, in uniaxial tension and uniaxial compression, have
been performed on a double-network hydrogel exhibiting a very high toughness. We observed a significant
hysteresis during the first loading cycle that increased strongly with the applied maximum deformation. A large
hysteresis was not observed during a second loading cycle, implying that the initial hysteresis can be attributed
to the fracture of covalent bonds in the primary network. We report this type of dissipative mechanism for polymer
gels for the first time. Assuming that the entire energy dissipated during the hysteresis cycle can be attributed to
the fracture of network strands by a Lake-Thomas mechanism, our results suggest that the fracture and unloading
of only 1% of the bonds within the network leads to a decrease of up to 80% of the number of strands. These
results also demonstrate the very large degree of heterogeneity within the hydrogel network. If such a dissipative
mechanism is active at the crack tip, it will most likely greatly increase the energy necessary to propagate a
macroscopic crack, elucidating the origin of the toughness in these interesting materials.

Introduction

With their high water content and carbon-based network
structure, hydrogels are the closest synthetic approximation to
biological tissue and materials. Hydrogels are particularly
interesting due their potential in a myriad of applications,
ranging from drug delivery1 to artificial cartilage2,3 in the realm
of biological sciences and including superabsorbants,4 micro-
fuidics,5 and contact lenses6 in the materials science domain.

Because the first generation of hydrogels was mechanically
weak, there was not much interest in extensively investigating
the origin of their mechanical properties. They were universally
understood to be weak systems due to the high water content
and the stretched and swollen state of the polymer chains.
However, while synthetic hydrogels are generally rather fragile
materials, those found in nature are much tougher. Newer classes
of hydrogels currently under investigation are those possessing
a greater degree of toughness, or fracture resistance, more similar
to natural systems. These hydrogels generally have a more
complex structure, and interest in understanding the mechanical
properties of these materials has resurfaced. The new class of
tough hydrogels includes double network (DN) gels,7-9 nano-
composite gels,10 natural polymer gels,11,12and interpenetrating
network gels.13

The mechanical behavior of these systems approaches that
of the behavior of a classical elastomer, but the typical rubber
elasticity models, such as Mooney-Rivlin, Gent,14 and Edwards
and Vilgis,15 do not seem to adequately explain their properties
at large strain. Polyelectrolyte gels, a common example, have
long posed problems for these models, although their swelling

behavior has been extensively studied.16-18 While inhomoge-
neity plays a role in controlling the unique mechanical properties
of these systems, it is not the complete story, nor is it true in
every case.9,19-21

Understanding what makes these new gels tough has been a
recent challenge. These materials are not only fundamentally
interesting but also useful in a variety of potential applications
that require adequate mechanical performance at stresses of
above∼10 MPa. Specific examples include artificial cartilage
and ligaments and more ergonomic prosthetics.9 We are
particularly interested in the double network (DN) gels intro-
duced by the Gong group. The DN gels possess exceptional
mechanical properties, including a high fracture strength (17.2
MPa in compression and 0.68 MPa in tension) and a large
fracture strain (92% and 75% in compression and tension,
respectively).8 Although containing only 10 wt % polymer, they
behave as robustly as some solvent-free conventional elastomers.
These characteristics have far-reaching implications for the
applications mentioned above as well as for an understanding
of material behavior in general. Fully understanding the source
of these systems’ exceptional mechanical strength could be
essential for the design of future synthetic gels.

Theoretical Considerations

Double-network gels have a very high toughness compared
to normal single-network gels. On the basis of previous work
on these materials,8,9,20 it is known that this enhancement in
toughness is particularly significant when the first network is
heterogeneous and brittle, in other words charged and highly
cross-linked, and the second network is soft and weakly cross-
linked. In general, if macroscopic crack propagation occurs, a
high material toughness is associated with a dissipative mech-
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anism around the crack tip.22 In the present study, we focus on
identifying the molecular origin of this dissipative mechanism.
The fracture experiments of Gong et al., performed at different
crack propagation rates, show little or no velocity dependence.9

Similar experiments performed in our lab support these results.
This observation implies that no viscous dissipative mechanism
is at work during the fracture process and that the most likely
dissipative mechanism is the sudden release of energy due to
bond breakage.

In principle, the minimum amount of energy that can be
released during bond breakage is the energy of the bond itself.
However, this would significantly underestimate the measured
value of energy lost, even in the complete absence of viscoelastic
dissipation. This minimum amount of energy is called the fatigue
threshold of a rubber and only depends on the architecture of
its network. The underlying mechanism was proposed more than
40 years ago and is known as the Lake-Thomas effect.23 In
essence, the breakage of each network strand between two cross-
link points irreversibly dissipates the strain energy of each
monomer composing the strand, which is assumed to be
stretched to the same level as the broken bond. This leads to an
amplification factor on the order of the number of monomers
per network strand.

During the propagation of a crack along a given fracture path,
if we assume that all the network strands within this path are
broken and that the path is planar, the energy dissipated per
unit area is simply the areal density of network strands crossing
the plane of fracture,Σ, times the average number of monomers
composing each strand, as described two-dimensionally in
Figure 1. If the network is homogeneous, the fracture of each
strand dissipates an energy equal toNh cUb, where Nh c is the
average number of C-C bonds between two cross-links and
Ub is the energy of a covalent carbon-carbon bond. If we
assume thatNc is ∼20 andUb is 360 kJ/mol, the fracture energy
is then 7200 kJ/mol. The areal density of strands within a plane
can be estimated from the length of a strand. For a single
network poly(2-acrylamido-2-methylpropanesulfonic acid)
(PAMPS) gel, which is highly charged and therefore highly
extended, we can assume that the length of a strand of 10
monomers is∼3.5 nm (0.75× 0.5 nm× 10), making the areal
density∼8 × 1016 m-2. The fracture energy is thenNh cUbΣ/NA

) 1 J/m2.
Real networks however are typically heterogeneous in terms

of their cross-linking structure and may resemble the structure
shown in the schematic in Figure 2 with less cross-linked regions
connected by more cross-linked regions. While everyone agrees
on the heterogeneous nature of the gels’ structure, the details

of that structure remain a matter of debate. Much depends on
the individual system and synthesis conditions.21,24,25If a crack
propagates through such a structure, it is likely that the fracture
of short strands in the highly cross-linked regions distributed
throughout the volume of the network will occur over a three-
dimensional volume rather than being confined to a plane, as
shown in Figure 2, making the amount of energy dissipated
potentially much larger.

For this situation to occur, there are two necessary conditions.
The first condition is that the cross-linking must be highly
heterogeneous, creating a network in which short strands
(reaching their extensibility limit) break first and far from the
crack tip. The second condition is that the fracture of short
strands must not lead to macroscopic crack propagation via the
coalescence of microscopic cracks. This second condition forms
the basis of a recently proposed model of gel fracture for double-
network gels.26 The model suggests that the second network in
DN gels serves to redistribute the stress concentration in a way
similar to that of craze formation in a glassy polymer, thereby
avoiding crack propagation. This process causes a large
damage zone and increases the toughness of the DN gel by a
factor of about 50 over the toughness of the second (tough)
network.

In the present paper we investigate the hypothesis that fracture
in DN gels involves the breakage of a large number of load-
bearing strands that are distributed over a volume.

As in most toughening mechanisms of polymers, this scenario
implies that some microscopic fracture event must occur in the
material before macroscopic failure occurs. This type of fracture
event should be mechanically detectable, through the presence
of a hysteresis in the loading-unloading curve. It is important
to note that, in the DN gels, viscoelastic hysteresis is likely to
be negligible because of the low viscosity of the medium. In
this work, we have performed systematic loading-unloading
experiments on the DN gels at increasing levels of strain in
both simple compression and simple tension. In recording the
level of hysteresis during these experiments, we investigate the
heterogeneous structure of the gel network.

Figure 1. Schematic of fracture of network strands along a plane.

Figure 2. Schematic of a heterogeneous network, with the dashed line
representing the plane of fracture and circles showing the short strands
of preferential covalent bond fracture away from that plane.
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Experimental Section

Materials. The DN hydrogels used in this work were synthesized
via a two-step sequential UV polymerization technique.8,9 The first
network was prepared from a 1 M aqueous solution of 2-acryla-
mido-2-methylpropanesulfonic acid (AMPS) with 4 mol %N,N′-
methylenebis(acrylamide) (MBAA) as a cross-linker. The gel
obtained after UV polymerization was immersed in a 2 Msolution
of acrylamide and allowed to swell to equilibrium. The second (un-
cross-linked) network was then synthesized by the same procedure
around the first swollen network. The initiator for both reactions
was 0.1 mol % (relative to monomer)R-ketoglutaric acid. This
procedure results in a gel composed of two interpenetrating, swollen
networks; the molar ratio of the second network to the first is 20.
The DN gel was then allowed to swell in deionized water until
equilibrium, decreasing the total polymer concentration to about
10%. Details of the hydrogel preparation have been described
previously.8,9 Double-network hydrogels prepared in this way were
stored at ambient temperature in water between experiments.
Appropriately shaped samples for rheology, compression, and
tension experiments were cut using sharpened punches and a press.

Mechanical Testing.Compression.Cyclic compression experi-
ments were performed on an MTS tensile test machine using a 50
N load cell (Sensotec). The hydrogel, in the form of a cylinder
(∼5 mm diameter and 3 mm in initial thickness), was placed on a
glass slide and brought into contact with a second glass surface to
a point of maximum compression before being retracted back to
zero load. Load and displacement data were collected during the
experiment, and the contact area and form of the gel were visually
monitored via a mirror throughout. In this way we could clearly
see that slippage occurs at the interface and that the gel deforms at
constant macroscopic volume and with an essentially full-slip
boundary condition. With these experiments, we are, in effect,
performing a uniaxial compression test equivalent to biaxial
deformation in the plane normal to the loading direction. Figure 3
shows a schematic of this test setup.

Tension.Tension experiments were performed using a JFC TC3
tensile test machine. Samples were cut to the requirements shown
in Figure 4 and held on the machine between clamps altered with
wood strips to better grip the slippery materials. A typical tensile
test consisted of an imposed traction to a set maximum displacement
followed by a return to zero load. Cyclic tests were performed by
performing subsequent trials immediately following the initial
loading.

Results
Compression. In this work, a typical compression test

consists of initial compressive contact to 0.5 N followed by

retraction to 0.01 N to ensure a starting point of complete contact
between the gel and glass surfaces. The test then begins with a
compression step performed at a constant crosshead speed of
25 µm/s (corresponding to an initial strain rate of 0.86× 10-2

s-1) to a maximum load (varied between 5 and 45 N), followed
by immediate retraction to 0.01 N and a wait time, usually 30
s, until the next cycle of compression. Figure 5 shows a typical
stress-lambda curve from a compression test trial composed
of two cycles of compression to 25 N. Compressive stress is
positive in the following discussions because we will be
regarding compression as biaxial extension, as outlined below.
The stress is nominal, defined asσcomp ) P/πa0

2, whereP is
the experimental force anda0 is the initial radius of the gel
cylinder. The parameter lambda is defined asλ ) h/h0, where
h0 is the initial height of the gel cylinder andh is its current
height.

All compression tests were performed on fresh samples so
that the term “first compressive cycle” always refers to a sample
that has not been previously deformed. In all cases the loading
curve of the first compressive cycle is different from the
unloading curve and equally different from the second loading
curve. As can be seen from Figure 5, the second loading/
unloading cycle is nearly elastic and closely follows the path
of the first unloading.

This behavior is very similar to the so-called “Mullins effect”
observed for filled rubbers. However, there are two significant
differences that relate to recoverability and second-cycle
hysteresis. In filled rubbers, the behavior of the virgin sample
can be recovered when the sample is left to rest without stress;
typically within 1 h, a new “first compression” curve can be
obtained, suggesting a slowly relaxing deformation mechanism.
In the case of DN hydrogels, we have waited up to 1 week
without having any substantial recovery of the virgin behavior.
The hysteresis of the second cycle in rubbers is still rather
substantial due to molecular friction. In our case the hysteresis
of the second cycle is barely measurable, implying very little
dissipation at the molecular level.

The irrecoverable nature of the damage done to the gel during
the first loading cycle is illustrated in Figure 6, showing
successive loadings of the same gel sample. A first loading cycle

Figure 3. Compression test apparatus.

Figure 4. Geometry of tensile test sample.

Figure 5. Compressive stress vs compressive lambda curves from a
typical two-cycle compression experiment.
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was performed to a maximumλbiax of 1.35; after 1 week, during
which the sample was kept in water, a second loading cycle
was carried out to aboutλbiax ) 1.55, and Figure 6 shows that
the loading curve closely follows the unloading curve of cycle
1 up toλbiax ) 1.35 but appears to continue the loading curve
of cycle 1 forλbiax > 1.35. Finally, a third loading toλbiax )
1.48 was carried out on the same sample after an additional
week, and in this case, the loading curve closely follows the
unloading curve of cycle 2, clearly demonstrating the irrevers-
ibility of the damage done to the gel in the previous loading
cycles. The number of fracture events is therefore directly
dependent on the maximum strain achieved during the first
cycle; i.e., if a second loading-unloading cycle is performed
at a lower or equivalent maximum strain, the material behaves
very elastically. On the other hand, if the maximum strain of
the second cycle surpasses that of the first cycle, the loading
curve has two parts, as shown in Figure 6.

In order to systematically investigate these fracture events,
each virgin sample was compressed once to a certain level of
applied force and then unloaded and immediately reloaded a
second time. Figure 7 displays a series, in increasing maximum
lambda (λbiax,max), of typical stress-lambda curves for the first
cycle of compression. Since uniaxial compression is equivalent
to biaxial stretching in terms of deformation, we have used

as our deformation variable to provide an easy comparison with
uniaxial stretching, which is presented later.

It is clear that while the loading curves fall on the same master
curve, the unloading curves are all different, strongly suggesting
that the hysteresis observed in the first cycle is related to
irreversible fracture events taking place for different values of
λbiax,max. The stress-lambda curves for the series of second
compressive cycles are shown in Figure 8 (for different values
of maximum first cycleλ). These cycles were performed
immediately after the first compressive cycles shown in
Figure 7.

In all cases, the DN gels behave elastically during the second
loading, with a very limited hysteresis. It is also clear, however,
that the DN gels display a significant degree of strain hardening
in these second loading curves. In order to emphasize this
nonlinear elastic behavior, it is more convenient to use the
Mooney stress representation classically used for rubbers. The
Mooney stress, defined below, can be typically plotted as a
function of 1/λbiax:

The Mooney representation of the second compressive cycles
is shown in Figure 9 for the maximum lambda series introduced
above.

Figure 6. Successive loading cycles in compression of the same gel
sample.

Figure 7. Typical stress-lambda curves for the first compressive cycle
as a function of increasing strain (virgin samples). Values in the legend
correspond to the maximum values ofλbiax achieved for each test.

λbiax ) 1

xλcom

(1)

Figure 8. Series of stress-lambda curves for the second compressive
cycles.

Figure 9. Mooney representation of curves from the second compres-
sive cycles.

σMooney)
σcomp

λcomp- 1

λcomp
2

)
σcomp

λbiax
4 - 1

λbiax
2

(2)

D Webber et al. Macromolecules



From Figure 9, it is evident that for increasingλmax the
Mooney stress is smaller at small strains and that strain
hardening begins at higher strains. It is also clear that the small
strain modulus of the hydrogels, directly represented by the
Mooney stress at values ofλ close to one, decreases with
increased compression during the first cycle.

Tension.Since it has recently been reported27 that the tensile
behavior of some DN gels can be significantly different from
the compressive, or biaxial stretching, behavior of these
materials, we also performed tensile experiments on the DN
gels.

Figure 10 shows subsequent cycles of typical tensile stress-
lambda curves for a 1.7 mm thick sample. The stress is nominal,
defined asσtens) P/tw, whereP is the experimental force and
t andw are the original thickness (∼2 mm) and width (4 mm)
of the gel sample, respectively. The value lambda is defined as
λtens) h/h0, whereh0 is the initial gage length of the gel sample
(25 mm) andh is its current length.

We carried out the same series of systematic loading-
unloading experiments in tension, to a maximum strain value
(λtens,max), that were described earlier in compression. The main
observations from these trials were the following:

(i) As in the compression experiments, a significant hysteresis
was observed for the first loading cycle. This is shown in Figure
11 for a series of samples stretched to different values ofλtens,max.
Higher extensions resulted in larger observed hystereses. Unlike
the experiments of Na et al.,27 these gels never formed a necked
region during extension, but the beginning of a softening process
suggests that this may have happened at higher strain values.

(ii) The first cycles from both tension and compression are
plotted together on Figure 12 in the Mooney representation.

Interestingly, this representation highlights the fact that, in
the first loading, these gels do show a hardening followed by a
stabilization of the modulus, a very peculiar behaviour for a
network, suggesting a yielding mechanism.

Similar to the observed behavior in compression, the second
tensile loading was very elastic with a minimum amount of
hysteresis, as shown in Figure 13. However the amount of
hysteresis observed during the second loading was slightly larger
in tension than in compression.

Analysis. It is clear from the data presented above that the
DN gels have a very peculiar behavior in large strain, with a
very large first cycle hysteresis and a very elastic second cycle
behavior that is dependent on the level of deformation reached
during the first cycle. In this section, we attempt a more
quantitative analysis of the data, beginning with a more
quantitative analysis of the hysteresis of the first loading cycle.

The hysteresis, or energy dissipated, is calculated according
to the following equation:

If we assume that no viscous dissipation is involved in creating
the first-cycle hysteresis, that all dissipation is due to bond
fracture, and that the Lake-Thomas model applies for all broken
load-bearing strands, we can estimate the fractionφb of covalent
bonds actually broken or “unloaded” by the fracture process
according to

whereCC-C (120 mol/m3) is the molar concentration of C-C
bonds in the primary network andUb (360 kJ/mol) is the fracture
energy of a C-C bond. Numerical values obtained from the

Figure 10. Stress-lambda plot for subsequent cycles of a tensile
experiment.

Figure 11. Stress-lambda curves as a function of maximum lambda
for the first cycle of a series of tensile tests.

Figure 12. Loading and unloading curves for the first cycle in tension
(full lines) and in compression (dotted lines) for different values of
maximum lambda (λtens andλbiax, respectively).

Figure 13. Stress-lambda curves as a function of first-cycle maximum
lambda for the second cycle of a series of tensile tests.

Uhyst )
1
h0
∫loading

σ dδ - ∫
unloading

σ dδ (3)

φb )
Uhyst
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compression and tension experiments are reported in Figure 14
as a function of the maximum strain (biaxial or uniaxial)
achieved during the first cycle. The physical interpretation of
the data is thatφb is the fraction of covalent bonds in the primary
network that have become unstressed, either broken or no longer
load bearing, during the deformation process.

This fraction of unloaded bonds from Figure 14 can then be
related to the structure of the partially fractured network, which
can be characterized from the second loading cycle.

It is apparent that as the maximum extension during the first
cycle increases, the level of hysteresis upon unloading increases.
If this hysteresis is attributed solely to the energy loss by the
Lake-Thomas mechanism during the fracture of the strands,
the hysteresis can be directly related to the fraction of unloaded
monomers. It is interesting to note that the absolute values of
the fraction of broken bonds remain below 1% in these
experiments but still has a significant impact on the elastic
properties of the material during the second loading, as can be
seen by comparing Figures 11 and 13, for example. Another
interesting observation can be made by looking more closely
at Figure 14. The fractionφb only depends on the maximum
value ofλ and not on a more general measure of the strain state
such as the first strain invariantJ1 defined as

When the same values ofφb are plotted in Figure 15 as a
function of the maximum value of the strain invariant achieved
during the first loading cycle, it is clear that this is not the
parameter controlling the fraction of broken bonds.

In order to estimate the change in properties of the network
after strands have been broken, we can calculate the variation
in the Mooney stress at a moderate strain (λ ) 1.1) between

the first and second cycles. This change in Mooney stress can
be related to the decrease in the number of available elastic
strands per unit volume using classical Gaussian rubber
elasticity.

Figure 16a shows the change in Mooney stress (equivalent
to the small strain shear modulusG) between the two cycles as
a function of λmax in the form of a fraction of the original
modulus (Gcyc2/Gcyc1), whereGcyc1 is the value of the Mooney
stress calculated during compression cycle 1 andGcyc2 is the
same modulus for cycle 2. Data from compression and tension
experiments are compared directly in Figure 16a, and despite
the difference between biaxial and uniaxial stretching, the trends
are quite clear. Aboveλ max ) 1.2, we see a clear decrease in
the modulus between cycles. This is the threshold strain at which
a significant number of short strands that contribute to the
material stiffness in the first network begin to break.

When Gcyc2/Gcyc1 is plotted vsφb (Figure 16b), it is clear
that the small strain modulus decreases significantly (20% of
the original value) when the network is strained to values of
λmax equal to approximately 1.6-1.8, while the observed
hysteresis is only equal to about 1% of the binding energy of
the C-C bonds of the first network. Although there are some
variations from sample to sample, the shear modulus drops from
approximately 80 to 15 kPa for the most damaged network.

Several molecular interpretations of this result, which depend
on the approximations made, can now be discussed. The most
straightforward interpretation of the modulus of a cross-linked
gel is to assume that

Figure 14. Fraction of bonds that are “destressed” during the first
loading cycle as a function of maximum lambda. The dashed line is a
guide to the eye.

Figure 15. Fraction of bonds that are “destressed” during the first
compressive loading cycle as a function of the first strain invariantJ1.

J1 ) λ1
2 + λ2

2 + λ3
2 - 3 (5)

Figure 16. Fractional loss in modulus (a) as a function of the maximum
biaxial extension achieved in the first loading and (b) as a function of
the fraction of unloaded bonds.

G ) 1
2

νkT (6)
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where V is the number of cross-links per unit volume. This
implies that a decrease inG of 80% would correspond to 80%
of the strands of the first network being broken. There are then
two limiting cases for the molecular interpretation of the
hysteresis. If we assume that the dissipated energy is due only
to the broken bonds themselves, then fracturing 1% of the bonds
corresponds to breaking 25% of the first network gel strands
(keeping in mind that the gels contain 4 mol % of cross-linker),
which would imply a moderate level of heterogeneity. However,
if we assume that each broken bond actually unloads all
monomers in its strand and that this energy is irreversibly lost,
then 80% of the strands only contain less than 1% of the bonds.
Using this interpretation, the results shown in Figure 14 are a
signature of the very large degree of heterogeneity of the first
network. In essence, less than 1% of the AMPS monomers are
located in 80% of the strands. If we make the analogy with the
molecular weight distribution of a linear polymer, then the
polydispersity ofMc is extremely large. This result is consistent
with the nonlinear behavior of the DN gels, which never shows
any real Gaussian elasticity (a nearly constant value of Mooney
stress) until a significant number of these short bonds are broken.
This is also consistent with the extremely high modulus
measured on the unbroken network. The measured shear
modulus of∼80 kPa would correspond to∼65 mol/m3 of elastic
strands if they were Gaussian. In reality, even a perfect first
network cannot contain more than 5 mol/m3 of strands on
average. Therefore, the modulus of the virgin material is very
much dominated by the short, highly extended PAMPS strands.

Finally, in terms of nonlinear elasticity, Figure 9 shows that
the onset of strain hardening occurs later as the maximum biaxial
deformation increases. This is a clear indication that the shortest
strands are being broken first, allowing the extension of longer
PAMPS strands.

We can try to analyze this trend more quantitatively by using
a simple nonlinear elastic constitutive equation which includes
strain hardening. In a relatively recent paper, Gent proposed a
simple model for unentangled cross-linked networks undergoing
strain hardening at large strains.14 He proposed the following
expression for the elastic strain energy per unit volume:

whereG is the shear modulus,J1 is the first stress invariant for
simple extension in the 1-direction (equal toλ1

2 + 2λ1
-1 - 3),

λ1 is the principal stretch ratio in the 1-direction (λcomp or λtens

in our tests), andJm is an adjustable parameter representing finite
extensibility as a maximum allowable value for the first stress
invariant. This constitutive equation and eq 1 can be used to
predict the tensile or compressive stress as a function ofλtens

or of λbiax with two adjustable parameters,G andJm:

Two representative fits of the compression data are shown in
Figure 17. Equation 8b fits the strain hardening of the second
loading of the DN hydrogels fairly well. However, because the
measured strain hardening for the most damaged networks was
more abrupt than eq 8b could predict, our fits attribute greater
weight to the large strain portion and theJm parameter.

Nevertheless, theG value used in the fit always fell within the
range of the experimental small-strain values that were used in
Figure 16.

The results of the strain hardening fits are summarized in
Figure 18. Interestingly, the correct reduced parameter with
which to compare the uniaxial and biaxial data is the maximum
value achieved by the first strain invariant rather than the
maximum value of the extension as in the discussion onφb

above.
The important result of Figure 18 is thatJm increases

markedly with the imposed strain. In other words, the load-

W ) - G
2

Jm ln(1 -
J1

Jm
) (7)

σtens) G
λtens- λtens

-2

1 - (J1/Jm)
(8a)

σcomp) G
λbiax

4 - λbiax
-2

1 - (J1/Jm)
(8b)

Figure 17. Compressive stress vs biaxial deformation showing the
experimental data for two examples of second loading (black markers)
and the best fit of the data with Gent’s model (thin lines).

Figure 18. Values ofJm from Gent fits to the DN hydrogel data: (a)
as a function of the maximum value of strain achieved during the first
loading and (b) as a function of the maximum value of the first strain
invariant.
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bearing chains becoming available for deformation during the
second loading are longer as theλbiax,max of the first loading
increases, and short chains are being broken. Unlike the fraction
of unloaded bonds which only depends on the maximum tensile
deformation achieved in the first cycle of loading, the nonlinear
elastic properties of the network during the second cycle of
loading appear to depend on the maximum value achieved by
the first strain invariant during the first cycle.

The reason for this difference is not obvious. It may be due
to the different nature of the two parameters. The bonds break
when chains reach their full extension, soφb should be related
to the average number of chains per unit volume reaching full
extension, i.e., the shortest chains only. On the other hand,Jm

is a critical amount of stored energy and should be related to
the elastic behavior of the longest chains that are not broken.

Discussion

It is clear from the mechanical data presented in this paper
that the behavior of DN gels is very different from that of a
regular elastic rubber or a single network gel. As soon as the
DN gel is deformed, it undergoes some permanent damage,
which then becomes more pronounced as the maximum strain
increases. The combined results in tension and compression
suggest that the first network of PAMPS is highly heterogeneous
in its cross-linking structure and also highly stretched. As soon
as it is deformed, some of the shorter strands break and the
number of broken strands is a very steep function ofλ. The
surprising result, however, is that this continuous fracture of
bonds does not lead to macroscopic fracture of the material. In
other words, no macroscopic crack propagates through the
sample although many microscopic, or even molecular, flaws
must be created within the material.

Two explanations can be proposed for this failure of crack
coalescence, which is the primary reason for the high toughness
of this hydrogel material. The first possibility is the bridging
effect due to the second network, discussed in the Introduction.
It is experimentally clear that the toughening effect is crucially
dependent on the existence and nature of the second network.
The second network must be neutral, interpenetrate the first
network, and either have a very high molecular weight (above
500 kg/mol) or be lightly cross-linked. It should also represent
90% of the weight fraction in polymer. The “crazelike”
mechanism proposed by Brown26 appears a very plausible
energy dissipation mechanism that delays macroscopic crack
propagation. However, it is also likely that in a situation in which
a macroscopic flaw, such as a crack, is present, the stress
concentration occurring upon loading is effectively averaged
by the softening of the material, even at large distances from
the crack tip. In this case, the material essentially forms a very
large plasticized zone, with energy dissipation taking place very
far from the crack tip in regions where the stress is rather low.
This aspect of the toughening mechanism appears similar in
principle to what is generally believed to occur in rubber-
toughened plastics in which rubber particles act as weak points
nucleating cavities, even relatively far from the crack tip, which
then act as nucleating points for crazes.28

Finally, it is worthwhile to point out that the details of the
structure presented in Figure 2 will be highly dependent on the
synthesis conditions of the first network. Further investigations
with different first network structures may shed some light on
the importance of this point for the toughening mechanism.

The other interesting parallel one might draw is between DN
gels and the filled elastomer networks used for rubber tires.29

In these materials, the interactions between polymer and carbon

black fillers result in a pronounced first cycle hysteresis that is
thought to be responsible for some of the very tough properties
observed for these materials.30 However, in the case of elas-
tomers, the interactions between particles and polymers are not
permanently broken, and if the sample is left to rest, it recovers
its virgin strength, typically within 30 min. We retested our
samples more than a week after the initial trials without
recovering much (if any) of the original strength, strongly
suggesting that we are indeed seeing irreversible bond fracture
during the first loading cycle.

Conclusion

We have demonstrated in this paper that the tough DN gels
prepared by the sequential free radical polymerization of AMPS
and acrylamide have an extremely heterogeneous cross-link
structure with more than 80% of the network strands being very
short. As a result, any deformation beyond about 20% results
in significant bond fracture in the material as demonstrated by
the large hysteresis observed in the first cycle of loading-
unloading.

This very large hysteresis is thought to be linked to the high
toughness of the gel. To our knowledge, it is the first time that
such an energy dissipation mechanism, similar to the Mullins
effect observed in filled rubbers, has been observed for polymer
gels.

The investigation of the change in elastic properties of the
network after the first cycle of mechanical testing reveals
interesting information concerning the degree of heterogeneity
in the first network, which should be characteristic of the details
of the synthesis conditions of that network.

When comparing tests in large strain performed in uniaxial
compression (biaxial tension) and uniaxial tension, we found
that the fraction of unloaded bonds only depends on the
maximum tensile deformation achieved in the first cycle of
loading. On the other hand, when the nonlinear elastic properties
of the network during the second cycle of loading are analyzed
with a constitutive equation, the main parameter controlling the
onset of strain hardening in the polymer chains during the second
loading cycle appears to be the maximum value achieved by
the first strain invariantJ1 during the first cycle.

The type of systematic hysteresis experiments reported in this
paper could be used to investigate the degree of heterogeneity
of different DN networks in order to better understand which
distribution of network strand lengths provides the most efficient
toughening of the gel. In this way, a more complete picture of
the behavior of these complex and interesting hydrogel materials
could be achieved.
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